
SAT Basics

Boolean functions

Let B = {0, 1} be the set of values 0 and 1. Call a variable that takes values only from B a
binary (or Boolean) variable. A Boolean function f : B × B × . . . × B → B is a mapping
from binary values to B.

Binary Operators and the Unary Operator ¬

Boolean functions may be expressed in terms of formulas that are built upon binary oper-
ators and the unary operator ¬. The reason for this is to be able to manipulate a given
formula algebraically so as to discover some properties about the corresponding function.
If v is a Boolean variable, the value of the expression ¬v is opposite the value of v: that
is, if v has value 1 then ¬v has value 0 and if v has value 0, ¬v has value 1. Note that
¬¬v = v. The following is a list of the five non-trivial binary operators. Symbols denoting
the operators are shown between their operands in the middle column. English language
descriptions of the operators are shown in the right column. Each 4 bit binary pattern on
the left represents the values of the expression of the middle column in the same row for
all possible input combinations: from left bit to right bit, the bit is the expression value if
v1 = 0, v2 = 0; v1 = 1, v2 = 0; v1 = 0, v2 = 1; and v1 = 1, v2 = 1, respectively.

Ox Syntax Operator

0001 v1 ∧ v2 logical and
1101 v2 → v1 logical implies
1011 v1 → v2 logical implies
0111 v1 ∨ v2 logical or
1001 v1 ≡ v2 logical equivalence
0110 v1 ⊕ v2 exclusive-or

Formulas

Formulas are defined recursively. Non-logical symbols ‘(’ and ‘)’ are added to the syntax of
a formula to allow its unambiguous evaluation. Any variable v or its complement ¬v is an
expression. If φ is an expression then (¬φ) is an expression. If φ1 and φ2 are expressions
and O is one of the binary operators, then (φ1 O φ2) is an expression. A formula is an
expression. Say symbol v represents a formula variable. Any occurrence of symbol v at a
particular point in a formula is called a positive literal and any occurrence of the string of
symbols ¬v is called a negative literal. Below, l will be used to denote a literal that could
be either positive or negative.

Given an assignment of values to the variables of a formula φ, the value of φ is determined by
repeatedly replacing an innermost non-evaluated expression either with its value as given by
the table above, where variables v1 and v2 are values of evaluated expressions, or by negating
the value of an evaluated expression.
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For example, the following is a formula:

(v1 ≡ ((¬v1 ≡ (v2 ∨ ¬v3)) ∧ ((v2 ∨ ¬v3) ∧ (¬v3 → (¬v4 → v5)))))

Under the assignment v1 = 1, v2 = 1, v3 = 0, v4 = 0, v5 = 1 evaluation proceeds step by
step as follows where comments are in red and expressions to be evaluated on the next step
are in green:

(1 ≡ ((¬1 ≡ (1 ∨ ¬0)) ∧ ((1 ∨ ¬0) ∧ (¬0 → (¬0 → 1))))) apply values to variables

(1 ≡ ((0 ≡ (1 ∨ 1)) ∧ ((1 ∨ 1) ∧ (1 → (1 → 1))))) all negations are innermost

(1 ≡ ((0 ≡ (1 ∨ 1)) ∧ ((1 ∨ 1) ∧ (1 → 1)))) (1 → 1) has value 1

(1 ≡ ((0 ≡ (1 ∨ 1)) ∧ ((1 ∨ 1) ∧ 1))) (1 → 1) has value 1

(1 ≡ ((0 ≡ (1 ∨ 1)) ∧ (1 ∧ 1))) (1 ∨ 1) has value 1

(1 ≡ ((0 ≡ (1 ∨ 1)) ∧ 1)) (1 ∧ 1) has value 1

(1 ≡ ((0 ≡ 1) ∧ 1)) (1 ∨ 1) has value 1

(1 ≡ (0 ∧ 1)) (0 ≡ 1) has value 0

(1 ≡ 0) (0 ∧ 1) has value 0

0 (1 ≡ 0) has value 0: the formula has this value

Evaluation is best visualized by a DAG with operators labeling internal nodes, variables
labeling leaves, node degree no greater than 2, and a single root. A non-leaf node represents
an expression: each of its edges is incident to a node that represents one of its operands and
the operator is given by the node’s label. Evaluation proceeds bottom-up through the DAG.
The DAG for the above example looks like this:
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The numbers in red indicate the order in which expressions were evaluated above.

Some parentheses may be removed without creating ambiguity because most binary operators
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are associative. For example

(v1 ∨ (v2 ∨ (v3 ∨ v4)))

(v1 ∨ ((v2 ∨ v3) ∨ v4))

(((v1 ∨ v2) ∨ v3) ∨ v4)

(v1 ∨ v2 ∨ v3 ∨ v4)

are all equivalent.

Shannon Expansion

A Boolean function f of n arguments may be expressed as follows

f(v1, v2, . . . , vn) = (vi ∧ f(v1, . . . , vi−1, 1, vi+1, . . . , vn)) ∨

(¬vi ∧ f(v1, . . . , vi−1, 0, vi+1, . . . , vn))

or as follows

f(v1, v2, . . . , vn) = (¬vi ∨ f(v1, . . . , vi−1, 1, vi+1, . . . , vn)) ∧

(vi ∨ f(x1, . . . , vi−1, 0, vi+1, . . . , vn))

for any vi. It follows by repeated application of the first of the rules above that any Boolean
function f may be expressed as follows

f(v1, v2, . . ., vn) = (f(0, 0, . . ., 0) ∧ ¬v1 ∧ ¬v2 ∧ . . . ∧ ¬vn) ∨

(f(1, 0, . . ., 0) ∧ v1 ∧ ¬v2 ∧ . . . ∧ ¬vn) ∨

(f(0, 1, . . ., 0) ∧ ¬v1 ∧ v2 ∧ . . . ∧ ¬vn) ∨

. . .

(f(1, 1, . . ., 1) ∧ v1 ∧ v2 ∧ . . . ∧ vn)

This is a canonical form known as Disjunctive Normal Form (DNF). By repeated application
of the second rule one obtains the following

f(v1, v2, . . . , vn) = (f(0, 0, . . ., 0) ∨ v1 ∨ v2 ∨ . . . ∨ vn) ∧

(f(1, 0, . . . , 0) ∨ ¬v1 ∨ v2 ∨ . . . ∨ vn) ∧

. . .

(f(1, 1, . . . , 1) ∨ ¬x1 ∨ ¬x2 ∨ . . . ∨ ¬xn)

which is known as Conjunctive Normal Form (CNF).

Consensus, Resolution, and Subsumption

A Boolean function that has been Shannon-expanded to an equivalent CNF or DNF formula
would generally be too large to work with without some rules that allow reductions to
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smaller, equivalent formulas. The most important of these are resolution for CNF formulas,
consensus for DNF formulas, and subsumption. Note that a CNF formula φ has this form:

φ =
m∧

i=1

(

ki∨

j=1

li,j)

The expression in parentheses is called a clause. In the above, there are m clauses in φ, the
number of literals in the ith clause is ki, and the jth literal of the ith clause is li,j. The ki

may not be equal to the number of variables because, as it is shown below, a CNF formula
may be reduced to a smaller, equivalent one.

Let c1 =
∨ k1

j=1
l1,j and c2 =

∨ k2

j=1
l2,j be two clauses in φ and suppose that for exactly one

pair of values for p, q where 1 ≤ p ≤ k1, and 1 ≤ q ≤ k2, l1,p = ¬l2,q. Then a new (inferred)
clause

c′ = l1,1 ∨ . . . ∨ l1,p−1 ∨ l1,p+1 ∨ . . . ∨ l1,k1
∨ l2,1 ∨ . . . ∨ l2,q−1 ∨ l2,q+1 ∨ . . . ∨ l2,k2

may be added to φ without changing the functionality of φ. That is, c′ contains all the
literals of c1 and c2 except for the two literals that were complements of each other. Clause
c′ is called a resolvent and the operation of adding c′ to φ is called a resolution step. The
variable whose positive literal and negative literal are missing from the resolvent is called
the pivot.

Let c1 and c2 be clauses in φ and suppose c1 has all the literals that c2 has. Then c2 subsumes
c1 and c1 can be removed from φ without affecting the functionality of φ.

The following example illustrates how resolution and subsumption can reduce the size of a
formula:

φ
before resolution: (v1 ∨ v2 ∨ v3) ∧ (¬v1 ∨ v2 ∨ v3) ∧ . . .
after resolution: (v1 ∨ v2 ∨ v3) ∧ (¬v1 ∨ v2 ∨ v3) ∧ (v2 ∨ v3) ∧ . . .

after resolution & subsumption: (v2 ∨ v3) ∧ . . .

The counterpart to resolution in DNF formulas is consensus. There is also a counterpart to
subsumption in DNF. These will not be discussed.

The Satisfiability problem (SAT)

SAT is one of the most important problems in computer science. It appears in the design and
testing of computer circuits, in theorem proving, in artificial intelligence, in determining a
safe shutdown path for complicated, state-of-the-art robotic machine tools, and many other
domains of computer science, operations research, and logic. For more information on one
of these applications see http://gauss.ececs.uc.edu/SAT/articles/FAIA185-0457.pdf.

An instance of SAT is a CNF formula φ. The Satisfiability problem is to determine whether
there exists an assignment of values to the variables of φ which causes φ to evaluate to 1.
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For a history of SAT see http://gauss.ececs.uc.edu/SAT/articles/FAIA185-0003.pdf.

Set of Sets Representation of CNF Formulas

To make algorithms for SAT easier to write and comprehend, a set of sets representation for
CNF formulas is used. In this representation a clause is just a set of literals and a formula
is a set of clauses. For example, the following is treated as a formula of three clauses, each
containing three literals:

{{v1,¬v2, v3}, {¬v1,¬v2, v4}, {v2,¬v3,¬v4}}

If c1 and c2 are clauses that a resolution step may be applied to with variable v as the pivot,
the resolvent c′ is given by:

c′ = {l ∈ c1 ∪ c2 : l 6= v and l 6= ¬v}

Davis-Putnam Procedure (DPP)

DPP determines the satisfiability of a CNF formula φ by eliminating one variable at a time
using resolution.

DPP (φ)
/* Input φ is a set of sets of literals representing a CNF formula */

/* Output is either “unsatisfiable” or “satisfiable” */

If φ = ∅ return “satisfiable”
If there is a clause containing a single literal l do the following:

Return DPP({c \ {¬l} : c ∈ φ and l /∈ c}).
If there is a variable v which occurs in φ only as either a positive literal
or as a negative literal do this:

Return DPP({c ∈ φ : v /∈ c and ¬v /∈ c}).
Choose any variable v from φ.
Repeat the following as long as there is a pair of clauses c1, c2 ∈ φ
for which a resolution step is possible with v as the pivot:

φ1 ← {{l ∈ c1 ∪ c2 : l 6= v and l 6= ¬v}}.
If φ1 = ∅ return “unsatisfiable”.
φ ← φ ∪ φ1.

Repeat the following while there is a clause c ∈ φ such that
v ∈ c or ¬v ∈ c:

φ ← φ \ {c}.
Return DPP(φ).

The 2nd and 3rd lines of the algorithm are known as the unit clause rule. If φ contains clause
{l} then all assignments satifying φ must have l = 1. Hence the question of satisfiability of
φ can be reduced to the question of satisfiability of φ with l = 1. But then all clauses of φ
containing l can be eliminated because they are satisfied by all assignments where l = 1 and
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all occurrences of ¬l in φ can be eliminated because they cannot contribute to satisfying the
clauses they are in for any assignment where l = 1.

The 4th, 5th, and 6th lines of the algorithm are known as the pure literal rule. If there is
a variable that occurs in φ either purely as a positive literal or purely as a negative literal
then if there is a satisfying assignment for φ, there must also be a satisfying assignment for
φ where v is set to make its literals in φ have value 1. Then the satisfiability of φ may be
reduced to the satisfiability of φ minus all clauses containing the pure literal.

Subsumption was not explicitly used in DPP but it could be added.

DPP was discovered in 1958. The problem with DPP then was that the amount of main
memory available on computers of the time was quite small compared to the needs of the
algorithm when applied to most interesting inputs. This was improved by a stack-based
implementation that is described in the next section.

Davis-Putnam-Loveland-Logemann Procedure (DPLL)

The improvement to the implementation of DPP is in the way variables are eliminated.
DPLL is a divide-and-conquer algorithm: it executes a search for a satisfying assignment
until either all clauses are eliminated or all literals of some clause are eliminated. At any
point in the search only some variables have been assigned values. Such partial assignments
are extended from a chosen variable v by exploring a subformula assuming v = 1 and, if
necessary, by exploring a subformula assuming v = 0.

DPLL (φ)
/* Input φ is a set of sets of literals representing a CNF formula */

/* Output is either “unsatisfiable” or “satisfiable” */

If φ = ∅ return “satisfiable”
If there is a clause containing a single literal l do the following:

Return DPLL({c \ {¬l} : c ∈ φ and l /∈ c}).
If there is a variable v which occurs in φ only as either a positive literal
or as a negative literal do this:

Return DPLL({c ∈ φ : v /∈ c and ¬v /∈ c}).
Choose any variable v from φ.
φ0 ← {c \ {v} : c ∈ φ and ¬v /∈ c}
If DPLL(φ0) == “satisfiable” Return “satisfiable”.
φ1 ← {c \ {¬v} : c ∈ φ and v /∈ c}
If DPLL(φ1) == “satisfiable” Return “satisfiable”.
Return “unsatisfiable”.

In the variation above a satisfying assignment is not returned. This is easy to add and
has been avoided to keep the algorithm as simple as possible. The algorithm may also be
improved by adding a search heuristic to determine a “best” variable to choose for elimi-
nation and a “best” order in which to search subformulas created by assigning that chosen
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(v0 ∨ v4) ∧ (v0 ∨ ¬v4) ∧ (v0 ∨ v1) ∧ (v1 ∨ ¬v2) ∧ (¬v2 ∨ v3) ∧

(¬v0 ∨ ¬v1 ∨ ¬v2) ∧ (¬v0 ∨ ¬v2 ∨ ¬v3) ∧ (v2 ∨ ¬v3) ∧ (v2 ∨ v3)

Figure 1: A DPLL refutation tree for the above CNF formula.

variable its two possible values. Finally, the collection of improvements known as Con-
flict Driven Clause Learning (CDCL) has enabled this form of search to solve problems
that had been considered intractable not long ago. For more information on CDCL see
http://gauss.ececs.uc.edu/SAT/articles/FAIA185-0131.pdf.

As a divide-and-conquer algorithm, the execution of DPLL on a particular input may be
traced graphically as a search tree. An example is shown in Figure 1. Each non-leaf of
the tree is labeled with a variable name and may have one or two descendents. The edges
connecting those descendents are labeled 0 or 1. A non-leaf node with two descendents cor-
responds to a variable that was chosen in the 7th line of the algorithm. A non-leaf node with
one descendent corresponds to an application of either the unit clause rule or the pure literal
rule. A path from the root to a leaf indicates a partial truth assignment to the variables of
the input formula. Thus, the partial assignment corresponding to the extreme left path in
the figure is v0 = v4 = 0 and v1 = 1. Each leaf is labeled with a clause that is falsified by
the assignment of the path to the leaf - the set-of-sets representation is used to save space.
The example of the figure is unsatisfiable, hence there is a clause labeling every leaf. If a
formula is satisfiable, one of the paths would lead to a leaf that was unlabeled and the path
to that leaf would be a satisfying assignment.

Binary Decision Diagrams

An alternative representation of Boolean functions is the Reduced Ordered Binary Decision
Diagram (BDD). An example is shown in Figure 2. A BDD is a rooted, binary directed
acyclic graph with two leaves labeled T and F. Internal nodes are labeled with variable
names as in DPLL search trees such as the one depicted in Figure 1. Out of each non-leaf,
one edge is labeled 0 and one edge is labeled 1 with the same meaning as in the DPLL
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(v0 ∨ v1 ∨ ¬v4) ∧
(v0 ∨ ¬v1 ∨ ¬v2 ∨ v3 ∨ ¬v4) ∧
(v0 ∨ ¬v1 ∨ ¬v2 ∨ ¬v3) ∧
(¬v0 ∨ ¬v2 ∨ v3 ∨ ¬v4) ∧
(¬v1 ∨ ¬v2 ∨ ¬v3)

Figure 2: A BDD on the left that compactly represents the Boolean function whose truth
table is displayed in the center. An equivalent CNF representation is obtained directly from
the paths connecting the root to the F leaf and is shown on the right.

search tree but in BDDs there is no node of degree 1. Unlike DPLL search trees there is
an order on the variables of the BDD and variables on any path from root to leave obey it.
A single BDD compactly represents a Boolean function and even a DPLL-like search tree
except that in BDDs equivalent subfunctions may share structure. This is one feature that
has given BDDs an edge over other representations in some applications. Other performance
enhancing features are primarily the BDD operations such as existential quantification and
greatest common co-factor that do not have a direct counterpart in DPLL-like algorithms.
For more information on BDDs see http://gauss.ececs.uc.edu/SAT/articles/bdd97.pdf.

It is straightforward to obtain an equivalent CNF representation of the Boolean function
that is represented by a BDD by traversing all paths from root to the F leaf: each path
represents one clause whose literals are the reverse of the assignment indicated by the path.
An example is shown in Figure 2.

Algebraic Methods

A collection of Boolean constraints may be expressed as a system of algebraic equations or
inequalities which has a solution if and only if the constraints are satisfiable. The attraction
of this representation is that algorithms for solving such systems incorporate operations that
can simulate a large number of resolution operations. The problem is that it is not always
obvious how to choose the optimal sequence of operations to take advantage of this and often
performance is disappointing due to non-optimal choices.

In the algebraic proof system outlined here, facts are represented as multi-linear equations
and new facts are derived from a database of existing facts using rules described below. Let
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〈c0, c1, . . . , c2n−1〉 be a 0-1 vector of 2n coefficients. For 0 ≤ j < n, let bi,j be the jth bit in
the binary representation of the number i. An input to the proof system is a set of equations
of the following form:

2n−1∑

i=0

civ
bi,0

1 v
bi,1

2 . . . vbi,n−1

n = 0

where all variables vi can take values 0 or 1, and addition is taken modulo 2. An equation
of the form above is said to be multi-linear. A product ti = v

bi,0

1 v
bi,1

2 . . . v
bi,n−1

n , for any
0 ≤ i ≤ 2n − 1, is referred to as a multi-linear term or simply a term. The degree of ti,
denoted deg(ti), is

∑
0≤j<n bi,j. A term that has a coefficient of value 1 in an equation is said

to be a non-zero term of that equation.

New facts may be derived from known facts using the following rules:

1. Any even sum of like non-zero terms in an equation may be replaced by 0. Thus,
v1v2 + v1v2 reduces to 0 and 1 + 1 reduces to 0. This reduction rule is needed to
eliminate terms when adding two equations (see below).

2. A factor v2 in a term may be replaced by v. This reduction rule is needed to ensure
terms remain multi-linear after multiplication (see below).

3. A multi-linear equation may be multiplied by a term and the resulting equation may
be reduced to a multi-linear equation by rule 2. above. Thus, v3v4(v1+v3 = 0) becomes
v1v3v4 + v3v4 = 0.

4. Two equations may be added to produce an equation that may be reduced by rule 1.
above to a multi-linear equation. Examples will be given below.

An equation that is created by rule 3. or 4. is said to be derived. All derived equations are
reduced by rules 1. and 2. before being added to the proof. The equation 1=0 is always
derivable using rules 3. and 4. (and implicitly rules 1. and 2.) from an inconsistent input set
of multi-linear equations and never derived from a consistent set.

Now for some examples. The CNF clause (v1 ∨ v2 ∨ v3) is represented by the equation

v1(1 + v2)(1 + v3) + v2(1 + v3) + v3 + 1 = 0

which may be rewritten

v1v2v3 + v1v2 + v1v3 + v2v3 + v1 + v2 + v3 + 1 = 0.

This may be verified from the truth table for the clause. The clause (¬v1 ∨ v2 ∨ v3) is
represented by

(1 + v1)(1 + v2)(1 + v3) + v2(1 + v3) + v3 + 1 = 0
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which reduces to

v1v2v3 + v1v2 + v1v3 + v1 = 0.

Exclusive-or and equivalence functions yield linear equations. Thus, (v1 ⊕ v2 ⊕ v3 ⊕ v4) is
represented by

v1 + v2 + v3 + v4 + 1 = 0.

An equation representing a BDD can be written directly from the BDD as a sum of algebraic
expressions constructed from paths to 1 because each path represents one or more rows of
a truth table and the intersection of rows represented by any two paths is empty. Each
expression is constructed incrementally while tracing a path as follows: when a 1 branch is
encountered for variable v, multiply by v, and when a 0 branch is encountered for variable v,
multiply by (1 + v). Observe that for any truth assignment, at most one of the expressions
has value 1. The equation corresponding to the BDD in Figure 2 is

v0(1 + v2) + v0v2(1 + v3)v4 + (1 + v0)v1(1 + v2) + (1 + v0)v1v2(1 + v3)v4 + (1 + v0)(1 + v1)v4 + 1 = 0

Addition of equations and the Gaussian-elimination nature of algebraic proofs is illustrated
by showing steps that solve the following simple formula:

(v1 ∨ ¬v2) ∧ (v2 ∨ ¬v3) ∧ (v3 ∨ ¬v1) (1)

The equations corresponding to (1) are expressed below as (1), (2), and (3). All equations
following those equations are derived as stated on the right.

v1v2 +v2 = 0 (1)
v2v3 +v3 = 0 (2)

v1v3 +v1 = 0 (3)

v1v2v3 +v2v3 = 0 (4) ⇐ v3 · (1)
v1v2v3 +v3 = 0 (5) ⇐ (4) + (2)
v1v2v3 +v1v3 = 0 (6) ⇐ v1 · (2)
v1v2v3 +v1 = 0 (7) ⇐ (6) + (3)
v1v2v3 +v1v2 = 0 (8) ⇐ v2 · (3)
v1v2v3 +v2 = 0 (9) ⇐ (8) + (1)

v1 +v2 = 0 (10) ⇐ (9) + (7)
v1 +v3 = 0 (11) ⇐ (5) + (7)

The solution is given by the bottom two equations which state that v1 = v2 = v3. If, say,
the following two clauses are added to (1)

(¬v1 ∨ ¬v2) ∧ (v3 ∨ v1)

the equation v1 + v2 + 1 = 0 could be derived. Adding this to (10) would give 1 = 0 which
proves that no solution exists.

Ensuring a derivation of reasonable length is difficult. One possibility is to limit derivations
to equations of bounded degree where the degree of an equation is

degree(e) = max{degree(t) : t is a non-zero term in e}.
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An example, adapted from Clegg et.al. (1996) is given below. In the algorithm terms are
re-indexed in a particular way. Then first non-zero(ei) is used to mean the highest index of
a non-zero term of ei. The function reduce(e) is an explicit statement that says reduction
rules 1. and 2. are applied as needed to produce a multi-linear equation.

An Algebraic Solver (ψ, d)
/* Input: List of equations ψ = 〈e1, ..., em〉, integer d */

/* Output: “satisfiable” or “unsatisfiable” */

/* Locals: Set B of equations */

B ← ∅.
Repeat while ψ 6= ∅:

Pop e ← ψ.
Repeat while ∃e′ ∈ B : first non-zero(e) = first non-zero(e′):

Set e ← reduce(e + e′). /* Rule 4. */

If e is 1 = 0: Output “unsatisfiable”
If e is not 0 = 0:

Set B ← B ∪ {e}.
If degree(e) < d:

Repeat for all variables v:
If reduce(v · e) has not been in ψ:

Append ψ ← reduce(v · e). /* Rule 3. */

Output “satisfiable”.

The reason for considering such solvers is that

1. The number of derivations used by the algebraic solver above is within a polynomial
factor of the minimum number possible.

2. The minimum number of derivations used by the algebraic solver cannot be much
greater than, and may sometimes be far less than the minimum number needed by
resolution.

And-Inverter Graphs

An And-Inverter Graph (AIG) is a directed acyclic graph where all “gate” vertices have
in-degree 2, all “input” vertices have in-degree 0, all “output” vertices have in-degree 1, and
edges are labeled as either “negated” or “not negated.” Any combinational circuit can be
equivalently implemented as a circuit involving only 2-input “and” gates and “not” gates.
Such a circuit has an AIG representation: “gate” vertices correspond directly to the “and”
gates, negated edges correspond directly to the “not” gates, and inputs and outputs represent
themselves directly. Negated edges are typically labeled by overlaying a white circle on the
edge: this distinguishes them from non-negated edges which are unlabeled. Examples are
shown in Figure 3.

AIGs are effective in dealing with the Combinational Equivalence Checking (CEC) prob-
lem which is to verify that two given combinational circuit implementations are functionally
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(a) “and” gate (b) “or” gate (c) “xor” gate

A

B

C

X

Y

u

w

v

(d) one-bit “adder” circuit

Figure 3: Examples of AIGs. Edges with white circles are negated. Edges without a white
circle are not negated.

equivalent. CEC can be solved very efficiently, in general, by incrementally building a single-
output AIG, representing the mitre of both input circuits, and checking whether the output
has value 0 for all combinations of input values. The AIG is built one vertex at a time,
working from input to output. Vertices are merged if they are found to be “functionally
equivalent.” Vertices can be found functionally equivalent in two ways: 1) candidates are
determined by random simulation and then checked by a SAT solver for functional equiv-
alence; 2) candidates are hashed to the same location in the data structure representing
vertices of the AIG (for the address of a vertex to represent function, it must depend solely
on the opposite endpoints of the vertex’s incident edges and, therefore, an address change
typically takes place on a merge). AIG construction continues until all vertices have been
placed into the AIG and no merging is possible. The technique exploits the fact that checking
the equivalence of two “topologically similar” circuits is relatively easy and avoids testing
all possible input-output combinations.

CEC proceeds with the application of many random input vectors to the input vertices of
the AIG for the purpose of partitioning the vertices into potential equivalence classes (two
vertices are in the same equivalence class if they take the same value under all random input
vectors). Then a SAT solver is used to verify that the equivalences actually hold. Those
that do are merged, resulting in a smaller AIG. The cycle repeats until merging is no longer
possible. If the output vertices hash to the same address, the circuits are equivalent. Alterna-
tively, the circuits are equivalent if the AIG is augmented by adding a vertex corresponding
to an “xor” gate with incident edges connecting to the two output vertices of the AIG and
the resulting graph represents an unsatisfiable formula, determined by using a SAT solver.
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Satisfiability Modulo Theories

There are many commonly occurring families of clauses that are known to cause difficulty
for resolution-based solvers. Many of these families arise from the need to reason about bit
vector operations or memory access and so on. Such reasoning is best left to tailored decision
procedures - such procedures are able to solve a system of constraints in a particular theory
(for example, bit vector logic) only. Typically, a system of constraints mixes terms that arise
in several theories. A SAT solver may be used to tie all the theories together to provide a
sound decision procedure for mixed theories. This is not an easy task - combining the results
of more than one decision procedure may not be sound. For details about SMT solvers see

http://jsat.ewi.tudelft.nl/content/volume3/JSAT3_9_Sebastiani.pdf
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